• Post category:StudyBullet-6
  • Reading time:7 mins read


Prepare for the Mulesoft Certified Integration Architect Certification by testing your skills to be ready for final exam

What you will learn

To validate that an architect has the required knowledge and skills to work with technical and non-technical stakeholders.

Create the high-level design of integration solutions and guide implementation teams on the choice of Mule components and patterns to use in the detailed design

Select the deployment approach and configuration of Anypoint Platform with any of the available deployment options.

Score 80%+ on each practice test and you’re ready for the real exam!

The practice exams will help you assess your readiness and ensure that you are fully prepared for the final exam.

Description

Are you ready to pass the Mulesoft Certified Integration Architect exam?

Find out by testing yourself with this new offering on Udemy. Each of the practice tests in this set provide an entire exam’s worth of questions, enabling you to confirm your mastery of the topics and providing you with the confidence you’ll need to take your Mulesoft Certified Integration Architect exam in 2022.

WHAT’S COVERED?

In this practice test set, we’ll cover all the topics included in Mulesoft Certified Integration Architect exam objectives.

1. Configuring and provisioning Anypoint Platform

  • Configure business groups, roles, and permissions within an Anypoint Platform organization.
  • Select Anypoint Platform identity management vs client management for the correct purpose.
  • Identify common and distinguishing features and usage scenarios for CloudHub VPCs and public worker cloud.
  • Suggest the number of Mule runtimes needed for a Mule application given performance targets and HA requirements.
  • Define a performant and HA deployment architecture for Mule applications in on-prem deployments.
  • Select monitoring options for all available platform deployment options.

2. Selecting integration styles

  • Given a description of an integration problem, identify the most appropriate integration style.
  • When designing an integration solution, select the most appropriate interface/data technology and interface definition language for all integration interfaces.
  • Design parts of an integration solution using general message-based integration or event-driven architecture (EDA) using message brokers or streaming technologies.
  • Recognize scenarios where message correlation is necessary.

3.Designing and documenting enterprise integration architecture


Get Instant Notification of New Courses on our Telegram channel.


  • For a given organization and their preferences and constraints, select the most appropriate Anypoint Platform deployment option.
  • Design parts of an integration solution using any SOA-based integration approach.
  • Identify the information that should be included in any integration solution architecture document.
  • Simplify a large-scale enterprise-wide integration architecture so that it can be effectively communicated to semi-technical stakeholders.
  • Identify the persistence mechanism and durability used for watermarks in different Mule runtime deployment options.
  • Identify integrations scenarios when to use batch.
  • Design for short or long retries using reconnection strategies.
  • Identify common and distinguishing features and usage scenarios for CloudHub DLBs and public CloudHub LBs.

4. Architecting resilient and performant integration solutions

  • Recognize requirements that are best addressed using transactions (single-resource and XA).
  • Define transaction considerations where needed in a solution design including the requirement for an external transaction coordinator.
  • Specify the connectors that can participate in the different types of transactions.
  • Recognize the purpose of various fault-tolerance strategies for remote calls.
  • Design parts of an integration solution using general batch-oriented integration or ETL to/from files or databases.
  • Determine if horizontal scaling will help a Mule application meet its performance targets.

5. Handling events and messages

  • Identify scenarios in which to use different storage mechanisms including persistent and non-persistent ObjectStore, in-memory ObjectStore, cluster-replicated in-memory OS, hashtables, and disk-persisted OS.
  • Select suitable storage mechanisms for IDs (correlation IDs, message IDs, transaction IDs) in Mule applications deployed to CloudHub or on-premises.
  • Use Mule 4 constructs to make effective use of Enterprise Integration Patterns.
  • Use streaming to handle large payloads within Mule applications.
  • Predict the runtime behavior of messages queued internally for processing for load balancing or to achieve reliability.
  • Predict the runtime load-balancing behavior of messages sent to the public URL of a Mule application deployed to multiple CloudHub workers.

6. Designing applications with Anypoint Connectors

  • For a given Mule 4 connector (Premium, Select, and MuleSoft Certified), identify its purpose, the network protocol it uses, and whether it supports incoming or outgoing types of connections.
  • Specify the requirements that would require the use of domain-level connectors.
  • Specify when a Mule application would require persistence and select an appropriate persistence solution.
  • Identify possible failures when a component (such as an API client) invokes a remote component (such as an API implementation).

7. Designing networks for Anypoint Connectors

  • For a given connector, recognize whether it will typically connect to/from an external system across organizational boundaries.
  • Use transport protocols and connectors correctly and coherently when and where applicable.
  • Match protocols with networking constraints and API layers.
  • When incoming and outgoing HTTPS connections with mutual authentication are used, identify what certificates are needed in what
  • stores in different environment.

8. Handling integration implementation lifecycles

  • Identify the Anypoint Platform components where various types of APIrelated assets and artifacts are maintained or published.
  • Recognize the advantages and disadvantages of storing and managing properties in properties files in Mule applications.
  • For a given API or integration, identify the steps that need to be taken in order for testing to occur.

9. Implementing DevOps

  • Specify the purpose of various MuleSoft products in the area of DevOps and CI/CD.
  • Identify differences, advantages, and disadvantages of DevOps based on deployable Mule applications versus container images.
  • Formulate an effective source code management strategy including branching and merging.
  • Specify testing strategies that use both mocking and invoking of external dependencies.

10. Operating and monitoring integration solutions

  • Specify the type of metrics for API invocations and API implementations that can be monitored with Anypoint Platform.
  • Identify metrics and operations exposed by default via JMX.
  • Identify differences in monitoring and alerting between customer-hosted and MuleSoft-hosted Anypoint Platform.
  • Identify ways of transmitting IDs between components in remote interactions and capture this in the interface design of the remote interaction.
English
language