Dive deep into Fluid Mechanics with over 29 hours of advanced engineering insights and hands-on CFD applications.
What you will learn
Provide an introductory overview of Fluid Mechanics tailored to beginner learners, covering fundamental principles and engaging course content.
Present a comprehensive derivation and detailed explanation of the continuity equation, accompanied by illustrative examples and numerical problem-solving.
Gain a thorough understanding of the momentum equation, both in its general form and in its differential form, along with practical applications.
Explore the Navier-Stokes Equation, comprehending its significance and wide-ranging applications in fluid dynamics.
Acquire a comprehensive understanding of the Reynolds Transport Theorem, including its derivation and practical implications.
Develop a solid grasp of linear and angular momentum equations and their relevance in fluid mechanics.
Dive into a detailed examination of the kinematics of various flow types, encompassing a comprehensive exploration of their characteristics.
Explore the principles of Potential Flow and delve into the concept of superposition, including in-depth discussions of its three types.
Gain insights into Turbo Machines, including the application of Euler’s Equation, analysis of blade angles, and evaluating performance factors.
Obtain in-depth information about turbines, including their operational characteristics and performance evaluation.
Familiarize yourself with the core concepts of Boundary Layer, including order analysis over flat plates, turbulent flow over flat plates, the Blasius solution.
Develop an understanding of External Flow concepts, focusing on topics such as Drag Coefficient and its significance in vehicle aerodynamics.
Explore the fundamental principles of Airfoil and delve into an analysis of its performance characteristics.
Gain a comprehensive understanding of advanced concepts in Computational Fluid Dynamics (CFD), including its applications across various industries and fields.
Why take this course?
你提供的内容是关于流体力学(Fluid Mechanics)的课程大纲,特别是边界层(Boundary Layer)、外流(External Flow)、阻力与升力(Drag and Lift)以及计算流体动力学(Computational Fluid Dynamics, CFD)的教学内容。这个课程涵盖了从基础理论到实际应用的多个方面,包括:
- 边界层(Boundary Layer):
- 控制体分析
- Von Kármán解决方案和积分方程
- 薄层阻力系数的近似解法
- 薄层的局部和平均阻力系数
- 阻力与升力(Drag and Lift):
- 对于不同形状的身体产生的结果力的分析
- 阻力和升力力的概念
- 阻力系数,包括薄层阻力系数、高 Reynolds数流和混合阻力层的阻力系数
- 外流(External Flow):
- 对于平板和圆柱形状的流体分析
- 低和高 Reynolds数流的特性
- 开放通道流的简介
- 流体力学中的阻力、升力和流动特征
- 计算流体动力学(CFD):
- CFD的概念和作用范围
- 数值方法,尤其是有限差分法
- CFD问题的解决步骤
- 几何建模和网格生成
- 预求解、解析处理和后处理(特别是在ANSYS-CFX中)
这个课程大纲可以帮助学生理解流体力学的基本概念,并通过实例和应用来深化理解。此外,通过引入计算流体动力学的工具和技术,学生可以将理论知识应用于现实世界的问题中,如汽车设计、飞机尖端形状优化、风能发电等。
在实际的教学过程中,这些话题可能会通过课堂讲解、示例问题、实验室练习和计算机软件操作(如ANSYS-CFX)来进行。这样的多元化的教学方法有助于学生从不同角度理解流体力学的概念,并能够将所学知识应用到实际工程设计和分析中。
English
language